ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy

نویسندگان

  • Neil A. Ranson
  • George W. Farr
  • Alan M. Roseman
  • Brent Gowen
  • Wayne A. Fenton
  • Arthur L. Horwich
  • Helen R. Saibil
چکیده

The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 13 Å Structure of a Chaperonin GroEL–Protein Substrate Complex by Cryo-electron Microscopy

0022-2836/$ see front matter q 2005 E Present address: S. Falke, Departm William Jewell College, 500 College 64068, USA. Abbreviations used: EM, electron single large monomer of glutamine normal mode flexible fitting. E-mail addresses of the correspon [email protected]; mfisher1@kumc The 13 Å resolution structures of GroEL bound to a single monomer of the protein substrate glutamine synthetase (G...

متن کامل

Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM.

Single-particle electron cryo-microscopy (cryo-EM) is an emerging tool for resolving structures of conformationally heterogeneous particles; however, each structure is derived from an average of many particles with presumed identical conformations. We used a 3.5-Å cryo-EM reconstruction with imposed D7 symmetry to further analyze structural heterogeneity among chemically identical subunits in e...

متن کامل

Crystal structure of a GroEL-ADP complex in the relaxed allosteric state at 2.7 Å resolution.

The chaperonin proteins GroEL and GroES are cellular nanomachines driven by the hydrolysis of ATP that facilitate the folding of structurally diverse substrate proteins. In response to ligand binding, the subunits of a ring cycle in a concerted manner through a series of allosteric states (T, R, and R″), enabling work to be performed on the substrate protein. Removing two salt bridges that ordi...

متن کامل

A Bayesian method for 3D macromolecular structure inference using class average images from single particle electron microscopy

MOTIVATION Electron cryo-microscopy can be used to infer 3D structures of large macromolecules with high resolution, but the large amounts of data captured necessitate the development of appropriate statistical models to describe the data generation process, and to perform structure inference. We present a new method for performing ab initio inference of the 3D structures of macromolecules from...

متن کامل

The Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL

Chaperonin-assisted protein folding proceeds through cycles of ATP binding and hydrolysis by the large chaperonin GroEL, which undergoes major allosteric rearrangements. Interaction between the two back-to-back seven-membered rings of GroEL plays an important role in regulating binding and release of folding substrates and of the small chaperonin GroES. Using cryo-electron microscopy, we have o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2001